

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FIRST SEMESTER EXAMINATION, 2016/2017 ACADEMIC SESSION

COURSE TITLE: ELECTRICAL POWER PRINCIPLES

COURSE CODE: EEE 415

EXAMINATION DATE: 6TH APRIL, 2017

COURSE LECTURER: DR P.K OLULOPE

HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. ANSWER **QUESTION 1** AND ANY OTHER **THREE QUESTIONS**.
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORISED MATERIALS DURING EXAMINATION
- 3. YOU ARE **NOT** ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION

Question #1

- (a) Differentiate between short, medium and long transmission lines in term of voltage level and length.
- (b) If $P_1 = \sqrt{3} V_L ICOS\theta$, and $P_2 = 3V_P ICOS\theta$ prove that $P_1 = P_2$ and state two ways of improving reactive power in power system.
- (c) State two ways you think Nigeria power system can be improved
- (d) List three conventional power generators
- (e) List two reasons why AC system is preferred in Nigeria compared to DC system.
- (f) What is the function Ring Main Unit (RMU) in substation?
- (g) List three equipment that can be found in distribution substation
- (h) How do you differentiate 33kV from 11kV?
- (i) List three ways of classifying distribution system
- (j) Differentiate between a feeder and a distributor.
- (k) What is the length of 11kV cross arm, height of 11kV pole, a span length for 11kV pole, depth from the ground of 11kV pole, diameter of 11kV wire?
- (l) A 3-phase, 50Hz, 100 km line has a resistance, inductive reactance and capacitive shunt admittance of $0.1~\Omega$, $0.5~\Omega$ and $3x~10^6~S$ per km per phase. If the line delivers 100 MW at 66 kV and 0.85~p.f.lagging, determine the sending end voltage and current. Assume a nominal π circuit for the line. (40 Marks)

Question #2

- (a) List the renewable energies and state two advantages over the non-renewable energy.
- (b) Explain with schematic diagram the operation of hydro power station. Compare (with two factors) the power station with that of nuclear power station.
- (c) A hydro-electric generating station is supplied from a reservoir of capacity 5 × 106 cubic metres at a head of 200 metres. Find the total energy available in kWh if the overall efficiency is 75%.

(20 marks)

Question #3

- (a) Mention 4 major components of an overhead line.
- (b) There is hardly any doubt that copper is an ideal material for transmission and distribution of electric power. Justify this statement.
- (c) List four types each of poles and insulators.
- (d) Why are suspension insulators preferred for high voltage power transmission?

(20 marks)

Question #4

(a) A 100-km long, 3-phase, 50-Hz transmission line has following line constants:

Resistance/phase/km = 0.1Ω

Reactance/phase/km = 0.5Ω

Susceptance/phase/km = 10×10^{-6} S If the line supplies load of 20 MW at 0.9 p.f. lagging at 66 kV at the receiving end, calculate by nominal π method:

- (i) Sending end power factor
- (ii) regulation
- (iii) Transmission efficiency
- (b) State two reasons why high voltage DC is preferable to high voltage AC

(20 marks)

Question #5

- (a) Draw a typical Nigeria grid system.
- (b) A 2-wire d.c. distributor AB is fed from both ends. At feeding point A, the voltage is maintained as at 230 V and at B 235 V. The total length of the distributor is 200 metres and loads are tapped off as under:

25 A at 50 metres from A

; 50 A at 75 metres from A

30 A at 100 metres from A

; 40 A at 150 metres from A

The resistance per kilometer of one conductor is 0.3Ω . Calculate:

- (i) Currents in various sections of the distributor
- (ii) Minimum voltage and the point at which it occurs

(20 marks)

Question #6

- (a) Define the following terms
 - (i) Demand factor
 - (ii) Load factor
 - (iii) Diversity factor
 - (iv) Plant capacity factor
- (b) List two differences between load curve and load duration curve
- (c) The daily demands of three consumers are given below

Time	Consumer 1	Consumer 2	Consumer 3
12 midnight to 8 A.M.	No load	200 W	No load
8 A.M. to 2 P.M.	600 W	No load	200 W
2 P.M. to 4 P.M.	00 W	1000 W	1200 W
4 P.M. to 10 P.M.	800 W	No load	No load
10 P.M. to midnight	No load	200 W	200 W

Plot the load curve and find (i) maximum demand of individual consumer (ii) load factor of Individual consumer (iii) diversity factor and (iv) load factor of the station.

(20 marks)